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We identify the energy contributions that govern the interorbital and inter- 
nuclear angles in the classical covalent structure of H20. The central atom 
valence state term plays a primary role in H20 an~ other AH2 molecules as 
well. Lone pair interactions of  three different types are also of  major 
significance. 
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1. Introduction 

In a number  of  recent studies [1-3] it has been shown that, as the internuclear 
angle varies away from equilibrium in a series of  AH,  molecules, the opt imum 
hybrid bond orbitals at the central atom remain essentially fixed in direction. 
This "orbital stasis" phenomenon suggests that the angle between the hybrids 
and, hence, the equilibrium internuclear angle may depend to a far greater extent 
on some atomic property than has, heretofore, been appreciated. 

The most appropriate  theoretical framework for investigating such a question is 
the valence bond model of  electronic structure since it gives the hybrid bond 
orbitals directly without requiring an arbitrary localization procedure. This model 
has been used, from an intuitive point of  view, as the basis of  VSEPR theory [4]. 
According to the latter the equilibrium internuclear angle is determined by 
repulsions between electrons in the various bond and lone pair orbitals. It is 
assumed that the angle between the bond orbitals is coincident with the angle 
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between nuclei. Although VSEPR theory has had much success, quantitative 
investigations have revealed that its basic assumptions are invalid [5]. Thus, there 
is a clear need for an explanation of the equilibrium internuclear angle which is 
consistent with the results of ab initio valence bond computations. 

Recently, some progress has been made along these lines [6] using a generalized 
valence bond description of second row AH2 molecules. In that description the 
number of o- lone pair electrons (in a symmetry constrained wavefunction) turns 
out to be crucial. Here, however we wish to utilize the "classical" valence bond 
treatment of Heitler, London, Slater, and Pauling (HLSP) to examine, par- 
ticularly, the covalent structure of H20. 

Not surprisingly, the HLSP wavefunction leads to a perspective on the factors 
governing orbital and nuclear angles that is rather different from the one which 
emerges from the genealized valence bond analysis mentioned above. We are 
hopeful that the two viewpoints will complement one another just as the molecular 
orbital Walsh rules complement VSEPR theory. 

Our anatomization of the HLSP wavefunction reveals that certain lone pair 
interactions are of particular importance for both the orbital and nuclear geometry. 
But the classical analysis shows that valence state energies are probably more 
significant. We have found that for second row AH2 molecules in general there 
is a correlation between the equilibrium internuclear angle and the minimum in 
the valence state energy of the neutral central atom. This can be rationalized on 
the grounds that the valence state energy plays the major role in determining the 
angle between the hybrid orbitals and that the nuclei follow these orbitals (even 
though, when the situation is reversed, the orbitals do not follow the nuclei). 

2. Computational details 

In the computations described here we have used the experimental O-H distance 
of [7] 1.8111 a0. Calculations were performed for H-O-H angles of 90 ~ 95 ~ 100 ~ 
105 ~ 110 ~ 120 ~ 150 ~ and 180 ~ For the oxygen atom a double-zeta basis set with 
the best atom orbital exponents of Huzinaga and Arnau [8] was employed. For 
the hydrogen 1 s orbital the exponent was taken to be 1.2. This basis was contracted 
to a 2s, lp /1  s set using Huzinaga and Arnau's atomic wavefunctions. The integrals 
were obtained by means of Stevens' program [9]. 

As we will see later the above basis set, in conjunction with the classical covalent 
wavefunction, reproduces the experimental equilibrium angle quite well and gives 
the vibrational force constant with reasonable accuracy. Although the hybrid 
bond orbitals are only slightly bent at equilibrium, they remain almost stationary 
in direction over a wide range of internuclear angles as found in other calculations. 

3. Covalent structure of H20 

For H20 the classical perfect-pairing covalent wavefunction, including only 
valence orbitals, may be written as: 
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-I/1 1112 12bl b2hlhEI + I111112 12blb2hlh21]. 
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(1) 

In Eq. (1) the oxygen orbitals are a set of mutually orthogonal hybrids of the form 

1 
b, = ~ [41 - a2s +py + ap~] 

1 
bE = ~-~ Ix/1 - a2s - p y  + apx] 

1 
11 = - ~  [as + Pz -~/1 - ce2px] 

1 
12 = --7 [as - P z  -41 - a2p~] 

42  
(2) 

where bl and b2 are the bonding orbitals while ll and la are the lone pairs. Here 
x is the symmetry axis and, for convenience, bl and b2 are taken to be in the xy 
plane. The hybridization parameter a is equal to cot (0orb/2), where 0orb is the 
angle between the bond orbitals. Thus, the hybridization and orbital angle are 
not separately variable. 

To simplify the energy expression and its interpretation each hydrogen orbital 
was orthogonalized to all other orbitals except for the oxygen hybrid to which 
it is paired. In doing so the two hydrogen orbitals were constrained to be 
symmetrically equivalent. This results in a set of non-linear simultaneous 
equations for the mixing coefficients which were solved numerically. The above 
strong orthogonality restriction leaves only one overlap integral S(bl ,  hi) = 
S(b2, h2) = S different from zero. Neither the total energy [10] nor the bending 
potential is significantly affected. A symmetric orthogonalization was not done 
because, from our viewpoint (as discussed in the Introduction) it was desirable 
to maintain the integrity of the central atom orbitals. For reasons analogous to 
those just cited, and with similar effect, the ls  core orbital on oxygen was 
orthogonalized to all the valence orbitals. 

For the hydrogen molecule the energy formula corresponding to the classical 
covalent VB wavefunction, i.e. 

1 

is sometimes written as: 

Jab + K~b 
EH ..... = Ea + Eb "+ 1 + S 2 (4) 
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where 

J~b=(aalbb)-(all la)-(bll lb)4 1 
RAB' 

K~b =(ab[ba}+2S[(a,_XV2[b)_(a[1,b)_(a,l[b)] 4 $2 
RAB' 

and Ea, Eb are the molecular valence-state energies (including normalization) of 
atoms A and B. This formalism lumps one-electron and nuclear repulsion terms 
together with two-electron contributions. The quantity Jab + Kab is indicative of 
an attractive bonding interaction between electrons in atomic orbitals a and b. 
On the other hand Jab- Kab would be indicative of a repulsive antibonding 
interaction while Jab--1/2 Kab would correspond to a nonbonding interaction. 
The terms in the energy expression for H20 can be combined in a similar manner 
to yield a sum of valence state energies, bonding, and nonbonding interactions. 

There are, all together, twelve separable contributions to the energy of the covalent 
structure of H20 as obtained for wavefunction (1). These include the valence 
state terms for oxygen and hydrogen and a bond pair term for the two OH bonds. 
The remainder consists of various non-bonded interactions. All twelve contribu- 
tions are given below. 

1. Oxygen molecular valence state term 

Ev~~ = E . . . .  + 2 ( I I [ - 1 v 2 - Z ~  Vcorelll)+2(121-�89 z - z ~  Vcorell2) 
ro ro 

+ (l11111111) + 4(11111/212) -- 2(I 1121/211) -~- (l1121/2/2) 

+ [(bl]-�89 2 _ZO+ro V~~ 2 ~  + r o  Vc~ b2) 

+ 2(blballll~)-(bd~ll, b1)+ 2(b~b~l1212>-(b,12112bO 
"l 

+ 2(b2b2[ 11 ll) - (bEl~[11b2) + 2(b2b2[ 1212) - (b212112 b2}[ (1 + $2) -~ 

+ [(b, b d b2b2) -�89 b2bl)](1 + $2) -2 (5) 

where 

E . . . .  = 2(1 sol-�89 2 _Zo [lso)+(lsolsojlsolso), 
ro 

and, in general, 

((~l Vcore[ (~> = 2((,b~bl 1 sol So) - (6 lsollso~b>. 

The electrons in the orthogonalized oxygen ls orbital, lso, have been included 
as a core potential in order to simplify Eq. (5). If  S is set equal to zero we get 

Evs (0). an atomic valence state energy which will be denoted atom 
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2. Bond pair term 

Ebp = (Jb, h,+ Kblhl+ J~h2+ K~h2)/(l + S 2) (6) 

where 

jb, h=(blbl lhahl)_(bl l  l_~[b~)_(hl[llhl)q 1 
FH1 ro  ROH'  

and 

1 1 S 2 
Kb, hl=(blhllhlb~)+ 2S(bll-�89 2 -  - - - ] h l ) + - -  

rill r o  Roll" 

Note that Jblh~ and Kb, h, are identical in form to the corresponding integrals in 
Eq. (4). Thus, Ebp is the energy of the two covalent O-H single bonds. 

3. Nonbonding interaction between bond hybrid and hydrogen 
1 + 1 Eb-h '= (Jb~h2--~Kblh2 J~h,--~K~h,)/(1 +$2) 2. (7) 

Here Jb, h~ has the same form as Jb, h,, but Kb, h2 is simply equal to (blh2lhzbl) since 
S(b~, h2) is zero. A similar comment applies to the exchange contribution in all 
the remaining terms. 

4. Lone pair-hydrogen interaction 

Elp-h = (2Jl, hx--Kt, hl+ 2Jl, hE-- Ktth2 

+ 2Jl2h , - -  K,2h~ + 2Jt2h~ -- Kt2h2)/(1 + S2). (8) 

5. Core-hydrogen interaction 

E . . . .  --h = ( 2 J l s o h ,  - -  K, soh, + 2 J l s o h 2  - -  Kisoh~)/(1 + $2). (9) 

6. Hydrogen molecular valence state term 

Ev~~ = [ (hl1-�89 Ihl)+ (h21-�89 1--~-[h2) ] / (1 + S2). (10) 
rH1 rH2 d 

It should be remembered here that h~ is not simply a hydrogen ls orbital but, 
due to orthogonalization, it is a combination which includes oxygen orbitals and 
the hydrogen ls centred on the other nucleus. For instance, for H-O-H = 105 ~ 
and a = 0.9 

h~ = 1.068h~ - 0.072h~ - 0.228 I1 - 0.22812 - 0.038 b2 (11) 

where the prime indicates the original nonorthogonal orbitals. Without 
orthogonalization a substantial portion of the hydrogen molecular valence state 
energy would serve merely to cancel extra terms in the energy expression due 
to overlap repulsion, particularly between the hydrogen ls orbitals and the lone 
pairs. 
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Z Nonbonding hydrogen-hydrogen interaction 

Eh-h' = ( Jh,h2--�89 h2)/ (1 + $2) 2. (12) 

The five remaining contributions are due to the charge distribution blhl (or b2h2) 
which is associated with electron exchange between the two orbitals of the bond. 
Our scheme for grouping the one- and two-electron parts here is in keeping with 
the Mulliken approximation [11] blhl ~ 1/2 S[b lb l+  hlhl]. Thus, we write 

8. Bond pair-atomic hybrid exchange interaction 

Ebp-b, = S(2JbpLb~ -- Kbpl~ + 2Jbp2b,- Kbp2b,)/(1 + $2) 2 (13) 

in which 

Jbp,~=(blhl[b2b2}-�89 r-~llb2)-(b,l~-o'h,)-l'~ S 
Roll 

and Kbp,~ = (blb2lb2hl). 

9. Bond pair-hydrogen exchange interaction 

Ebp-h, = S(2Jbp, h2- Kbp, h2+2Jbp~h,- Kbmh,)/(1 + $2) 2 (14) 

where 

Jbp, hz = (blhl[hzh2) -�89 l +  l--[-Ih9 - (b,I 1--Llh,) 
ro FH1 rH2 

and Kbp, h2 = (b~h21h2h~). 

10. Bond pair-lone pair exchange interaction 

Ebp-tp = 2S(2Jbp, ii - Kb.,t, + 2Jbplt2 -- Kbp,,~ + 2Jb~,: - Kbp~,, 

+ 2Jb.,~-- Kbp~,:)/(1 + S 2) (15) 

with 

jbp, h=(blh l l l ,  l,)_�89 l l _ l l l , ) _ ( b l l l l h , ) + l  S 
rill ro Z ROH 

and Kbp, t, = (bll, ll, hl). 

11. Bond pair-bond pair exchange interaction 

Ebp-bp, = S2( 4Jbp, b~ -- 2Kbp, b~) / (1 + $2) 2 (16) 



Factors determining bond angles 413 

where  

Jbp, bp2 = (blhllb2h2)-lS[ (bl[ 1 + l-~-[hl)+(bz[ l +  l-~-lh2) ] 
k ro  rH2 ro  rH 1 -J 

I.RmH2 

and  Kbplb~ = (blh21b2hO. Final ly ,  we have the 

12. Bond pair-core exchange interaction 

Ebp-eore = 2S( Jbp, lso - gbp, lso~ 2Jbp21so -- Kbp~l,o)/(1 + S 2) (17) 

in which  

Jbp, lso = ( b l h l l l S o l S o ) - l S ( l s o l ! l l s o ) - ( b l l  l lh~)-F 1 S 
rill ro 2 Rol l  

and  Kbp~lso = (bllsollSohl). 

The to ta l  energy  o f  the  cova len t  s tructure,  E~ov(H20), is the sum of  Eqs. (5) - ( 10 ) 
plus (12)- (17) .  

4. Discussion 

For  a cons tan t  O-H b o n d  length,  Eeov(H20 ) is a func t ion  o f  (i) the  hybr id  orb i ta l  
p a r a m e t e r  a,  and  (ii) the H - O - H  angle 0nut- The equ i l ib r ium geomet ry  is deter-  
m i n e d  by  the fact  tha t  the  energy is a m i n i m u m  with respect  to var ia t ions  in bo th  
a and  0nut. By vary ing  a with 0nuc fixed at the  equ i l ib r ium value  one can find 
out  wha t  the  var ious  energy componen t s  con t r ibu te  to 0orb. The var ia t ion  o f  0nu~ 
with a f ixed at  the o p t i m u m  value,  a ~ y ie lds  an ana logous  analys is  of  the 
in t e rnuc lea r  angle.  

We give a ~ ( and  the co r r e spond ing  0orb) in Table  1 as a funct ion  o f  in te rnuc lea r  
angle.  Over  the  range  f rom 90 ~ to 120 ~ the o p t i m u m  hybr id  angle  0orb changes  

Table 1. Optimum hybrid orbital angle and energy as a function of 
internuclear angle 

Internuclear Optimum hybrid E 
angle ot ~ angle (Hartree) 

90 ~ 0.929 94.2 -75.8181 
95 ~ 0.918 94.9 -75.8233 

100 ~ 0.908 95.5 -75.8261 
105 ~ 0.899 96.1 -75.8269 
110 ~ 0.890 96.7 -75.8257 
120 ~ 0.871 97.9 -75.8168 
150 ~ 0.709 109.3 -75.7595 
180 ~ 0.000 180.0 -75.7087 
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by less than 4 ~ This is the orbital stasis phenomenon. The total energy is a 
minimum at 0,ur = 104.4 ~ which may be compared with the observed [7] equilib- 
rium angle of  104.5 ~ A quadratic fit to the energies calculated at the three angles 
nearest equilibrium yields a force constant that is higher than experiment [12] 
(0.078 vs. 0.049 a.u.) but in close agreement with other valence bond [13] and 
molecular orbital [14] calculations. 

In Fig. 1 we have plotted OE/aa evaluated at the equilibrium internuclear angle 
(actually, for convenience, at 105 ~ versus a for the various energy components. 
As noted in an earlier paper [15] it is more appropriate to consider OE/Oa than 
E because the variation condition applies particularly to the derivative. With one 
exception only those energy components that have large derivatives in the vicinity 
of a ~ are shown. There are four of them. The oxygen valence state energy has 
the largest magnitude and for it, together with the lone pair-hydrogen interaction, 
OE/aa < 0. These terms lower the curve for the total energy derivative and thereby 
tend to increase a ~ or, equivalently, favor a smaller interorbital angle. The effect 
is opposite to that of the other two significant terms, namely the hydrogen valence 
state energy and the bond pair-lone pair exchange interaction. 

The bond pair-lone interaction term arises because of the overlap between the 
two bonded orbitals (i.e. bl and hi). If this overlap were reduced the interaction 
term would diminish and the interorbital angle would be smaller. 

The large effect of the hydrogen valence state energy is due primarily to 
orthogonalizing the hydrogen orbitals to the lone pairs. Consequently, there is a 
strong tendency for this valence state term to cancel with the lone pair-hydrogen 
interactions. A like tendency is observed for the bond pair-lone pair and oxygen 
molecular valence state curves. 

Over the entire range of  a shown in Fig. 1 the bond-pair and total energy 
derivatives are remarkably close to one another. It would be inappropriate, 
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however, to conclude that o p t  is determined by bond-pair interactions since 
there are other much larger contributions to oE/aoz, at least in the vicinity of the 
energy minimum. If it turns out that the correspondence between these two curves 
is preserved for other molecules as well, then a more rigorous explanation for 
the near-cancellations will have to be found. 

A similar situation exists at other internuclear angles. In fact, Fig. 1 may be taken 
as representative of all 0nuc between 90 ~ and 150 ~ 

Due to the constrained form of the classical HLSP valence bond wavefunction 
its minimum energy is -0 .14  hartrees higher than that of the molecular orbital 
wavefunction although the calculated HLSP equilibrium internuclear angle agrees 
somewhat better with experiment (the molecular orbital result is 108.5~ Inclusion 
of the ionic O-  structure [16] lowers the valence bond energy by more than 0.14 
hartrees but does not substantially affect the bending potential. 

The optimum internuclear angle for a given ~ (or 0orb) is displayed in Table 2. 
Over a wide range of 0orb the optimum 0nuc remains 7-9 ~ larger. Hence, the nuclei 
follow the orbitals even though the orbitals do not follow the nuclei! In Fig. 2 
we present a plot of OE/OOnu c v e r s u s  0nuc for several energy components. Here 

= 0.90 which is the optimum value at equilibrium and is also very close to 
being optimum at all internuclear angles between 90 ~ and 120 ~ . Only three 
components are of significance in this angular region. They are the same ones 
mentioned previously except that, in this case, the oxygen valence state energy 
is unimportant. Again, the hydrogen valence state energy term and the lone 
pair-hydrogen interaction oppose one another. Both of  them have an effect on 
0hue which is opposite to their effect o n  0or b. The hydrogen valence state energy, 
for example, causes the internuclear angle to be smaller than it would otherwise 
be. The bond pair-lone pair exchange interaction is relatively less significant than 
before; it now acts in concert with the other lone pair interaction term. 

We conclude that both the orbital and internuclear angles in the covalent structure 
of H20 are governed by valence state energies and by lone pair interactions with 
either the hydrogens or the bond pairs. The bond pair interaction is due to 
exchange between the two bonded orbitals. Indirectly the oxygen lone pairs also 

Table  2. O p t i m u m  in t e rnuc lea r  angle  as a func t ion  o f  hybr id  orbi tal  angle  

H y b r i d  O p t i m u m  E n e r g y  In t e rnuc l ea r  ang le  

ang le  i n t e rnuc l ea r  angle  ( H a r t r e e )  - hyb r id  angle  

1.00 90.0 ~ 92.1 ~ -75 .7412  2.1 ~ 

0.95 92.9 ~ 100.1 o -75 .8227  7.1 ~ 

0.90 96.0 ~ 104.4 ~ -75 .8269  8.4 ~ 

0.85 99.3 ~ 108.2 ~ - 7 5 . 8 2 2 4  8.9 ~ 

0.80 102.7 ~ 111.7 ~ -75 .8147  9.0 ~ 

0.70 110.0 ~ 118.6 ~ -75 .7960  8.6 ~ 

0.60 118.1 ~ 125.4 ~ -75 .7769  7.4 ~ 

0.50 126.9 ~ 132.2 ~ -75 .7591 5.4 ~ 
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play a major role in the hydrogen valence state term through the orthogonality 
requirement on the original hydrogen orbitals. 

A similar analysis can be applied to other AH2 molecules. We have calculated 
just one of the terms, namely the valence state energy of the central atom in the 
second row series from Be to O. Table 3 lists the hybrid orbital angle implied by 
the minimum in this energy component. Since ionic structures may contribute 
significantly in the molecule, the singly-charged species A + and A- are included 
along with neutral A. Only in the case of the 2A1 state of BH2 and the 3B, state 
of C H  2 do the ionic and covalent structures give different minima. A correlation 
may be seen between the experimental internuclear angle and the orbital angle 
obtained for the covalent structure. (The relatively large difference for C H 2  

between the observed angle and the angle predicted on the basis of a pure covalent 
molecule is probably due to the important role of the A- structure.) 

Table  3. Hybr id  orbi ta l  angle  co r r e spond ing  to m i n i m u m  in centra l  a tom va lence  state energy  of  first 

row AH 2 molecu les  

Hybr id  orbi ta l  angle  for m i n i m u m  

Expe r imen ta l  in va lence  s ta te  energy  

Molecu le  State i n t e rnuc lea r  angle  A A § A -  

Bel l2  iXg + 180 ~ 180 ~ 180~ 180~ 

BH2 2AI 131 ~ 120~ 90~ 180~ 
2B 1 180 ~ 180 ~ 180 ~ 180 ~ 

C H /  3B1 136 ~ 109.5 ~ 90~ 180~ 

1A l 102.4 ~ 90 ~ 90 ~ 90 ~ 
NHE 2B1 103-4 ~ 90~ 90~ 90~ 

OH2 1Al 104.5 ~ 90 ~ 90 ~ 90~ 
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We may rationalize the observed correlation as follows. The central atom valence 
state energy exerts the primary influence in determining the optimum 0orb- Once 
0orb has been found, then 0nuc follows closely along as noted in our discussion 
of Table 2. The hydrogen valence state energy and the relevant lone pair interac- 
tions must also be taken into account but they do not alter the overall correlation. 

We have identified the energy terms that govern the interorbital and internuclear 
angle in the classical covalent structure of HzO. Our analysis directs attention to 
the primary role of the oxygen valence state energy. In addition, the lone pairs 
are of major significance through (i) direct interaction with the hydrogens, (ii) 
exchange terms involving the bond pairs, and (iii) the indirect effect on the 
hydrogen valence state energy due to orthogonalizing the hydrogen orbitals. 

Acknowledgement. We wish to acknowledge v~aluable discussions with Prof. W. E. Palke. 
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